Just adding a few comments to this thread that may help. Feel free to make comments if you feel that I’ve got something wrong. You need to follow Crestron’s recommendations and requirements for the network - not only because they won’t support you otherwise, but because NVX is terribly bandwidth hungry (and that’s a whole other conversation) For every encoder on the network you need to ensure there is at least 1Gbps of uplink bandwidth for wherever that traffic needs to go - especially to your RVP if you’re using PIM and multicast routing. So if you have 20 encoders downstream of a core then you’ll need at least 20Gbps of uplink to the core from these. Yes, for a large NVX deployment it can end up being crazy numbers, but that’s what you need. When you consider the above, avoid putting the stream through any MX. The MX devices just replicate multicast traffic to all other ports in the same broadcast domain (there is no IGMP smarts) - my guess, although one of the Meraki team will need to confirm, is that this is done in software. With this replication and the bandwidth of the stream that the NVX encoders produce you’ll likely overwhelm almost any MX to the point of complete meltdown. From what I’ve seen the encoders produce a continual multicast stream whether or not anything is listening to it. So the minute any encoder boots expect to see a huge amount of multicast date on the network. Admittedly this may just be poor configuration of encoders for what I’ve seen, but be aware. (And obviously make sure broadcast/storm controls are set appropriately). Never flood multicast - even if you have only a few NVX encoders on your network and you flood multicast traffic your network will meltdown. The amount of traffic produced by a few of these encoders will easily overwhelm a 1Gbps port if not controlled with IGMP. So you will need IGMP snooping and an IGMP querier on the Layer 3 interface, and PIM-SM/multicast routing if you expect to go across VLANs (i.e. a MX with a Layer 3 interface isn’t going to cut the mustard). As others have said, if the NVX traffic doesn’t need to go somewhere make sure that you prune those VLANs from any trunks that you have. In this regard it’s critical that you understand your STP topology and where that multicast traffic is going. Ironically the MS390 switches appear to do a better job with multicast and IGMP (especially at this scale) than the traditional Meraki switches - it’s just a shame that there are currently so many other limitations with them. I can’t guarantee that this will get the Crestron NVX solution to work every time, but it’s going to give you the best chance of getting it to work.
... View more